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SUMMARY 

The governing differential equations of motion for a high speed 

cylindrical roller bearing are developed under the assumptions that 

the bearing is isothermal and that the roller tilt and skew are very 

small. Two sets of differential equations are presented; the first 

which deals with planar motion of the roller bearing system, and the 

second which includes the effect of roller skewing. The equations 

as presented are in a format for programming on a digital computer. 



INTRODUCTION 

Current design trends for aircraft gas turbine engines are to 

achieve higher speeds and lighter weights. The primary advantages 

of these higher speeds and light weights are to increase payload 

and to reduce the drag induced by the externally mounted machines. 

The mainshaft bearings used for high speed turbines are both 

cylindrical roller and ball bearings. The roller bearings have 

both high radial load capacity and the ability to permit rela- 

tively unconstrained axial motion under differential thermal expan- 

sion of the rotor when the engine is at operating condition. At 

high speeds and under low loads the rollers in the bearing have a 

tendency to slip or skew or both. These phenomena may cause the 

bearing to fail prematurely due to surface distress and/or jamming 

between the cage and the roller which can lead to catastrophic 

bearing failure. 

In lightly loaded roller bearings operating at very high 

speeds, the rollers are subjected to centrifugal forces which keep 

them in contact with the outer race. The rollers are also sub- 

jected to contact forces as they traverse through the load zone of 

the bearing and react against the externally applied loads. These 

loading conditions, together with the effects of elastohydrodynamic 

lubrication, influence the rollers to slip relative to the races. 

As a consequence, the cage rotational speed falls below the theo- 

retical epicyclic speed and, as the rollers traverse through the 

load zone, they are subjected to a varying radial force which 
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causes them to speed up and to slow down. 

To understand the behavior of high speed lightly loaded roller 

bearings, it is necessary to examine the dynamic behavior of the 

rollers and the cage, and to determine the force interactions 

present in the bearing. Methods which are currently available are 

steady state force and moment balances. These analyses predict 

the average forces and moments on the rollers and cage. Transient 

effects such as cage whirl, roller slip as a function of angular 

position, or skewing cannot be predicted with any reasonable accu- 

racy using these steady state methods. A time-domain solution to 

the differential equations of motion of the rollers and the cage 

in the bearing will provide detailed information on the cage-roller 

and roller-race interactions in the bearing. This detailed knowl- 

edge of the behavior of high speed roller bearings will aid engi- 

neers and engine designers in finding ways to improve their design 

with the objective of increasing roller bearing operating life and 

reliability. 

TWO articles have reported studies of the transient 

dynamic behavior of ball bearings. Walters [l] investigated the 

interaction between the cage and the ball while Gupta [2] investi- 

gated the ball-race dynamics without the effects of the bearing 

cage. Rumbarger, et al. [3] modeled the roller bearing and per- 

formed a steady state dynamic analysis on the resulting system of 

equations. The results of this study showed that the predicted 

cage slip compared favorably with experimental data on cage slip 

when the effective viscous drag forces of the lubricant on the 

cage were adjusted by varying the effective density of the lubricant. 



Recentlyi Gupta [4] published a series of papers on the dynamic 

analysis of rolling element bearings. The approach to the problem 

utilized by Gupta is essentially the same as the approach utilized 

in this report. The work by both investigators was conducted inde- 

pendently and resulted in the same general approach to the problem. 

Most of the models in this report and in [4] are based on the work 

of Rumbarger et. al. [3]. 

The major assumption used in this work is that the bearing 

system is at a thermal steady state. This implies that the lubri- 

cant properties do not vary because of temperature changes and that 

the geometry of the rollers and races remains constant because of 

no thermal expansion. The motion of the rollers was assumed to be 

essentially planar. The tilt and skew angles of the roller are so 

small that they do not appreciably change the dynamics of motion 

of the roller, but the tilt and skew angles do have a dominant effect 

on the forces acting on the roller. 

The purpose of this program of research was to achieve the 

following goals: 

(1) To develop models which describe the interactions among 

forces, relative displacements and relative velocities 

between components in a cylindrical roller bearing and 

which are computationally efficient. 

(2) To develop a working computer program for planar motion 

of the rollers and cage in the bearing which incorporates 

the models from goal (1). 

(3) To develop the additional models and governing differen- 

tial equations which describe the three dimensional 

motions of the rollers. 
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(4) To develop a working computer program for the three dimen- 

sional motion of the components of the bearing. 

The above goals were met and the results are presented in the 

subsequent sections of this report. The governing relationships 

between forces and displacement and velocity for the many conditions 

present in roller bearings are presented in the section THE CONSTI- 

TUENT MODELS. 

The governing differential equations of motion are developed 

for the two dimensional motion. Then the governing differential 

equations of motion for the three dimensional motion are derived. 

The assumptions upon which these equations are based together with 

the process of non dimensionalizing the equations are discussed. 

The final section of this Part contains the conclusions and 

recommendations for further work. Part II [5] of this report con- 

tains the organization of the computer program and results obtained 

by using this program. 
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THE CONSTITUENT MObELS 

The primary forces present in a high speed roller bearing are 

the normal forces between the roller and the races needed to balance 

the external forces and moments and the centrifugal forces on the 

rollers. Associated with these normal forces are the tractive 

forces between the rollers and the races. 

The cage-roller interaction forces result from a lubricant 

squeeze film phenomenon and, in extreme cases, a contact phenomenon. 

The remaining forces are a result of shear stresses on the surfaces 

of the cage and rollers due to a shearing of the fluid medium. 

The relationships between the forces and the deflections and 

relative velocities are based on the global coordinate system shown 

in Figure 1. The y axis is placed in a vertical position, parallel 

to the gravity vector, and z axis is parallel to the centerline of 

the shaft. The x axis is perpendicular to both the y and z axes. 

The angular velocities of the j'th roller and the cage are shown in 

Figure 2; l 

cj 
is the angular velocity of the roller about its own 

. 
axis, P j 

is the angular velocity of the center of mass of the roller 
. 

about the global z axis and 3 is the angular velocity of the cage 

about the global z axis. The forces and moments acting on a roller - 

are shown in Figures 3 and 4. Figure 3 shows the net forces and 

torques projected on a plane normal to the z axis while Figure 4 

shows the distribution of load between the roller and inner race 

and the roller and outer race together with the roller-guide flange 

impact forces (top view only). The net forces and torques acting on 

the cage are shown schematically in Figure 5. The net translational 
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Figure 1. The Global Coordinate System for the bylindrical 
Roller Bearing 



R 

‘\ 
Figure 2. The Angular Velocities of the Roller and the Cage 
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Figure 3. The For5es and Torques in Planes Normal to the 
z-Axis 
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Cage Pocket, 

Figure 5. The Net Forces and Torques Acting on the Cage 
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forces, cFx and =Fy, are the sum of the forces acting onthe cage 

as a result of cage-roller interaction and cage-guide flange inter- 

action. The torques TDRIVE and TDRAG 'are the sums of all the driving 

torques and drag torques respectively as a result of cage-roller inter- 

action, cage-guide flange interaction and drag torques induced by the 

cage moving through the lubricant/air medium. 

This section identifies each of these forces and presents the 

detailed relationships necessary to calculate them. 

. 
Load distribution in the rollers 

When the spacing between the inner race and the outer race is 

less than the undeformed diameter of the roller, a normal contact 

pressure between the roller and the races is induced. The movement 

of the inner ring relative to the outer ring may be a result of 

directly applied external forces or overturning or misalignment 

moments. The contact pressure on the rollers will be symmetrical 

if the loading is due only to a directly applied radial force. If 

misalignment is present, the contact pressures will be non-symmetrical 

along the length of the roller. In this investigation only crowned 

rollers are considered. 

This problem was investigated by Harris [6] and by Liu [7] who 

considered the effect of centrifugal force for high speed cylindrical 

roller bearings. The roller is divided into segments or "slices" 

along the axis and the contact pressures are determined over each of 

these segments, Figure 4. This provides an approximation to the non- 

uniform load distribution along the axis of a roller under misalign- 

ment. 

12 



The analysis is based, on the work of Palmgren [B] which gives 

a relationship between the deformation (g) of a cylinder of length 

(a) and an applied load (Q) as 

0.9 
g=A+ 

1’ 

(1) 

where A = 5.46 X 10e8 for steel components. As the computer program 

will utilize displacements as the state variables, the above expres- 

sion is inverted, utilizing a load intensity q. 

then 

1.11 
q= g 

* 1.11 0.11 
L 

(2) 

(3) 

When the bearing is subjected to radial displacements A, and 

AY 
and angular misalignments ex and 0 , the equations (13) and 

Y 
(14) in Liu [7] are replaced with the following expressions for 

the total contact deformations at the inner and outer contacts 

respectively at the center of the i th slice of the j th roller. 
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glij = Ax cos#j '+.Ay cos (bj - 92) 

! ., 

+ z. 1 + R (112 (ey ~0s +j - ex sinbj))] . 

[ 

ey CO,+. - 9, sinb. - 
3 J Bj sign Ccos (4j + n/2 - $,)I 

Pd --- 
2 qj - ci 

g2ij = '6oj + ['i + R (l/2 'ey cos ,, - ex sinbj))] 

[p j sign (cos (bj + “/2 - Q,))] ,.I 

- c i 

(4) 

(5) 

where C i is the initial separation due to crowning 

and Pd is the diametral clearance 

and where + 0 
is given by the following relationship based on Ref. 5: 

9 = tan -1 5 
0 

eX 
(6) 

if 8 
X 

= 0 and ey >, 0 , Q! o = n/2 

eX = O and "Y <O, ii! =-n/2 
0 

Thus, using the conventions in Liu [7], the misalignment 

applied to any roller at any angular location + j 
is 

8. 
J 

= ey cos + j + e, cos (#j + V2) (7) 
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The centrifugal force on a roller is given as (based on equation 

(17)inLiu[71) ,’ 
NP I I 

Fc = TT/8 ("/30)2p (2(R + r))m 2 
C c 

(2r - 2~~)~ 

/ k=l 

where p is the mass density of the roller 

*C 
is the angular velocity of the cage 

'k i.s'the roller crown'drop at segment k as defined for 

'equation (4) 

The load distribution on the rollers in the bearing is deter- 

mined by enforcing the conditions of static equilibrium of forces 

and moments on each of the rollers. The diametral clearance, 

initial separations due to crowning and linear and angular defor- 

mations of the inner race with respect to the outer race ( %P $9 

% ey) are given as inputs to the calculation. The computational 

procedure will give the central deformation of the roller, J<, 

and the angular displacement of the roller, b., for all the rollers. 
3 

The contact pressure distributions are then calculated using the 

5ij' s and the 8.'~. 
J 

The net load and moment on the bearing can be 

determined from equilibrium considerations of the inner contact 

forces on the inner race. 

The static equilibrium of force on the roller implies that 

the sum of the forces at the inner contact and the centrifugal 

force must balance the forces at the outer contact. Setting these 

sums equal to a residual (Fj) gives 
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NP 

F. = 
W 

J (9) 
A 

1.11 0.11 
(Plij)l'll - w 

a P1 PJo-11 

(g,ij)l'll 1 
j = 1, . . . . NZ 

The static equilibrium of moments on the roller implies that 

the sum of the moments of the inner contact forces must balance the 

sum of the moments of the outer contact forces. Setting these sums 

equal to a residual Fj + NZ gives 

-NP 
w 2. 

,l.li QO.ll (glij) 
1.11 w z. 

Fj-kNZ = - .1.1'1 Qo.ll (S,ij)'." 

1 
(10) 

j = 1, . . . . NZ 

where NZ is the number of rollers 

- NP is the number of slices along the axis of the roller 

W is the width of a slice = a 
NP 

When the state of static equilibrium is reached, the residuals 

will be reduced to zero. This is a system of (2 X NZ) nonlinear 

algebraic equations in the NZ variables and the NZ variables g.. 
3 

Defining 

r = 
A1.llw~o.ll (-11) 
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c-- -- 

equations (9) and (10) become 

NP 

Fj= f~[(glij)'*" - (g2ij)""! + Pc 
i=l 

(12) 

j = 1, . . . . NZ 

F j+Nz=&i (glijP1 - zi k2ijP*11] (13) 
i=l 

j = 1, . . . . NZ 

A Newton-Raphson procedure is used to solve this system of 

equations. The derivatives of the residual functions to be used 

in the Jacobian matrix are given as: 

if kPj 

NP 
= l.l,rC{ -(glij)O*ll - (g2ij)o.111 

! 
i=l 

. 
ii 

2. 
1 + + (Qy COS+j - 9X sin$j)l 

* sign (cos (a(j + ;T/2 - 4,))) 

if k=j 

if khj 

= 1.11 1 [-(glij)O-ll - (g2ij)o*11!.r 
i=l 

(14) 

(15) 

if k=j 
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aF jsNZ = o 
aSk 

if k 4. ‘.’ J 

(16) 
NP 

= 1.11 r 
xi i=l 

-zi (glij)o'll' -'zi (gzij)o'll] 2 

. 
-N -'i 

+ -$ (Gy cosdj - Qx sin +j)j 

l sign (cos(ij + $- - (9, >)) if k=j 
/ 

a F. +NZ 

a 6" 
= 0 if k+j 

#I( 
(17) 

= l.ll$ L ;. -z i 1 if k=j 
i=l 

(glij)o'll - zi (gzij)o'll 

Denoting changes in the values of S. 
J 

and &j by d pj and 6gij 

respectively, the system of equations to be solved is of the form: 

1 aF. J+NZ 
aF 

1 [ 
j+NZ 

a gk adotk 1 

- rF ’ 
iJ -1 

I (18) 

The submatrices in the coefficient matrix are diagonal, so 

the solution of the above system of 2 X NZ equations in 2 X NZ 

unknowns can be reduced to the solution of NZ (2 X 2) systems of 

equations. A solution may be obtained very efficiently. This 

procedure is programmed in subroutine ROLDIS [5] and its sub- 

sidiary subroutines. 
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The total normal forces on the roller at the inner race and 

the outer race are then given as: 

NP 

(glij) 

1.11 

NP 
(1% 

N out 
(j) = 7 w 

L- A1.11 Qo.ll (P2ij)"" 

i=l 

j = 1, . . . . NZ 

Traction between the rollers and the races 

The tractive forces in an EHD contact between a roller and a 

race are dependent on the lubricant formulation, the Hertzian contact 

pressure, the rolling velocity, the sliding velocity and the temper- 

ature of the surfaces. Experimental evidence, e.g. [9], has shown 

that the tractive forces are not directly proportional to the shear 

rate of the lubricant over a wide range of shearing rates. For a 

constant maximum Hertzian pressure and rolling velocity, the traction 

force rises, peaks and then decreases with increasing sliding velocity. 

An approximate model which was utilized for the development of 

the roller bearing dynamics computer program is based on a curve of 

normalized traction coefficient versus normalized sliding speed. 

This curve was presented in Ref.[lO] for a Mil L-7808 oil. 

The model is a piecewise linear approximation to the above ref- 

erenced curve which is presented in Fig. 6. The normalizing constants 

cL* and u 
S 
* are given as [lo]: 

19 
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0 

Relative Sliding Rate 
u&J*s 

Figure 6. Normalized Traction Curve for Mil-L-7808 Oil 
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I. - 

Pb 

( 

4.598123 
f(qo) = 0.802 (4, x lo-8> 

where q 
0 

is the maximum Hertz contact pressure (n/m2) 

U 
S 

* 
‘U 

S 

* 
U 

'b 

V 

P 

Lt* 

Ckk 

is the sliding velocity at a roller/race contact 

(m/s) 

is the normalizing value of u 
S 

is the base value of the relative sliding velocity 

upon which the correlation is based. (For Mil 
* 

L-7808 oil, u 
'b 

= 1.397 m/s 

is the rolling velocity at the roller/race contact 

(m/s) 

is the oil viscosity at operating temperature 

0.46 

(20) 

0.56 

(21) 

(22) 

n 

(m‘ls) 

is the traction coefficient 

is the maximum value of the traction coefficient 

corresponding to us 

is a base value of the traction coefficient upon 

which the correlation 'is based. (For fil L-7808 

oil, 0.019). 
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The traction coefficient is given by the following model: 

U 

0s -+ < 0.25. 
S 

P U 

- = 2.80 -& 
P * S 

U 

0.25 < + 
uS 

< 0.50 

CL U 

- = 0.70 + 0.80 
CL * -+ - 0.25 

S > 

U 

0.50s -+ < 0.75 
S 

P 
yr 

= 0.90 + 0.30 ( 
U 

-+ - 0.50 
S ) 

(23) 
U 

0.75 ,< -+ ,< 1.00 
S 

!L U 

- = 0.975 + 0.10 S - 
I.L* ( us* - 0.75 

) 

U 

l.OO< * 
S 

CL U 

- = 1.00 - 0.0571 
w t 

S - - 1.00 
Ii" 

S 1 

U 

-y+ > 15 
S 

P 
- = 1.00 - 0.0571 

CL* ( 15.0 - 1.0 ) 

22 



Although this model is an approximation, it fairly represents 

the traction phenomenon in an EHD contact with Mil L-7808 oil. 

Other models can be utilized in the roller bearing dyn&.m&s pro&&m 

for different oils merely by changing a subroutine. The above equa- 

tions are programmed in the function subroutine COEFF [5]. 

The traction force between the rollers and the race is of the 

form 

F N' IN =pi.n in 

F 
OUT = pout Nout 

(24) 

Drag forces on the cage 

As the cage rotates in the bearing it is subjected to forces 

which accelerate its motion and to forces which retard its motion. 

This section is devoted to the description of those forces which 

retard the motion of the cage excluding those caused by cage/roller 

interaction. 

These drag forces are induced by the shearing of the air/oil 

mist mixture enveloping the cage of a high speed bearing. They 
. 

are considered to act on the outer and the side surfaces of the " I 

cage. 

Boness[ll] experimentally described and analytically discussed 

the influence of the amount of lubricant supply on cage and roller 

motion in high speed roller bearings. Poplawski [12] introduced a 
'.,' ' 

fluid churning loss and cage pilot surface friction formulations. 
- 

Rumbarger et. al. [3] extended Poplawski's approach and further 

examined the influence of fluid drag forces on individual surfaces 
: ; ,, 1. 

of the cage. 
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The models used in this computer program are taken from Rum- 

barger et. al. [3]. The drag torques acting on the outer cylin- 

drical surface of the cage are described by' an equation of the form 

TCDO = 'w A rOIJT (25) 

where TCDO is the drag torque on the surface 

7W 
is the wall shear stress 

A is the surface area 

rOUT 
is the outer radius of the cage 

The wall stress for a surface rotating in a viscous fluid is 

defined by [13]. 

7 
=' fpu2 

W 2 (26) 

where f is a friction factor 
I 

P is the fluid density 

U is the m.ass average velocity of the fluid 

rcurik 
and u = - 2 

for this correlation. , * 

where & is the angular velocity of the cage. I~_ 
The effective density of the oil/air mixture about the cage 

is given in [3] 'as 

P ~= p (DECFKQ2 
eff (0.4 + 0.6 DECF'JL) (27) 

where DECFIJL is the ratio of the o$l volume in the bearing to the 

tptal volume of the bearing. . . . 

P is the density of the oil 

P eff is the effective density 
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The Couette turbulence regime is assumed for the-outer surface, thus 

- = 3.0 [ SE0 ] o*855g6 f 

fL 
(28) 

where 
rp 

NM = - 
V 

and 

Here NRE is the Reynolds number 

fL is the laminar, friction factor 

If the Reynolds number is less than 2500 or the Taylor number 

is less than 41, the appropriate friction factor is taken to be the 

(29) 

(30) 

laminar friction factor fL. The Taylor number is defined as 

N 
rp C =- 

TA V Al-- rc 
(31) 

where rc is a 'characteristic radius, equal to r OUT 

w is the angular velocity, equal to 

C is a,radial clearance 
. . 

V is the oil kinematic viscosity 

For the side walls of cages,' the characteristic radius to be used 

in the correlations below is modified by using the relationship 

5 r 
C = rOUT 3 crouT2 - 'IN21 (32) ( 

where rOUT is the outer radius . I 

?N 
is the inner.radius . :- -< 
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The Reynolds number is given in this case as: 

2 
=c fJ 

NRE = - 
V 

and the drag torque on the sides is given as 

where 

CN = -_ 
1. 

TCDS 
= + 2 r5 pu, 

C 'N (34) 

(33) 

3.87 for laminar flow, 

(35) 
0.146 

(Q lJ5 
for turbulent flow 

N RE > 300,000 

These relationships are programmed in subroutine CGTRQ [5]. 

Roller-cage interaction forces 

In roller bearings the rollers have the freedom to move relative 

to the cage. In the load zone, the roller may be accelerated and 

approach the front part of the pocket resulting in a driving force 

on the cage. Outside of the load zone the roller may start to slip, 

decelerate and 

in a retarding 

film forces in 

then approach the rear part of the pocket resulting 

force on the cage. In many instances the squeeze 

the lubricant which are generated by the relative 

approach of the roller and the cage are not large because of the 
. . 

relative freedom of motion of all the components of the bearing. 
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If the force was too large, the cage would accelerate or decel- 

erate until an equilibrium could be reached between all the rollers 

and the cage. 

The model which was used in'the computer program is that given 

by Dowson, Markho and Jones [14]. This mode!, describes the lubri- 

cation of lightly.loaded rigid cylinders by an;isoviscous lubricant 

in combined rolling, sliding and normal motion, 'Fig. 7 . The gov- 

erning equation is the Reynolds equation with side-leakage neglected. 

The boundary conditions used for this model are: 
1 

at the'inlet, the pressure is zero; 

at the outlet, the pressure and the pressure 

gradient are zero. 

The normal pressure distribution is computed and from this the 

normal force and traction forces‘are determined%. Dowson, Markho 

and Jones presented their results and gave regreision equations for 

the instantaneous load carrying capacity and the surface tractions. 

The data given are ideal for inclusion in the roller bearing dynamics 

program because of the relative ease in calculating the regression 

equations. 

The expression for the instantaneous load carrying capacity is 

N = 4.896 

Ho r 

1 o 

_ l 

- 1.89351 q f 1.54192 q2 - 0.33529 q3 

- 0.17678 q4 - 2.85050 q Ho + 1.73361 q2 Ho] (36) 

ifqa0 
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Figure 7. Model of a Rigid Cylinder Impacting a Surface 
with Combined Rolling, Sliding and Normal Motion 
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N = 4.896 
r 

1 o 

Ho l 

- 1.87439 q + 1.70716 q2 + 0.62039 q3 
L 

+ 0.04271 q4 - 3.31298 q Ho + 1.35849 q2 Ho] (37) 

where N 

4 

HO 

n 

P 

U 

w 

R 
eq 

i-2 

,if q<O 

is the dimensionless 'normal load carrying capacity per 
.._, . . n unit length of cylinder = - pl .. 

is the dimensionless (normal/entraining) velocity pa- 

rameter = + (&)l/i 
. 0 

h 
0 is the dimensionless minimum film thickness = - R 

eq 
is the normal load per unit length of the cylinder 

is the dynamic viscosity of the lubricant 

is the entraining velocity = 
U + Reqfl 

2 

is normal velocity of the cylinder 

is the radius of the geometrically equivalent 

cylinder near the plane. 

is the angular velocity of the cylinder 

The surface traction acting on the roller is given by 

F roller = *--& [IB - c q (38) 
0 

The surface traction acting on the cage pocket surface is 

given by 

F cage = '* CB + "1 
0 
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where F roller and F cage are dimensionless tangential surface forces 

f arising from viscous stresses = - 
PU 

B, C are constants which are defined below 

; is the dimensionless sliding ratio = 

2( 
U-Reha 

q 1 LJ + Reqn 

The constants B and C are defined as follows: 

B = (B) q=o l \ - 0.76128 q - 0.00358 q2 + 0.42000 q3 

- 0.21924 q4 - 60.53144 q Ho + 19.56741 q2 Ho] (40) 

ifqa0 

B = (B) i-1 q=o I- 
- 0.76443 q - 0.02328 + 0.37387 q3 

-l- 0.17758 q4 - 60.92918 q Ho - 21.20263 q2 Ho 1 (41) 

ifq<O 

where 

(B)q=O 2 = 4.5685 - 681.56 Ho + 341795 H 0 

c = (C) - 0.19300 q + 0.08479 q2 f 0.33245 q3 

- 0.11347 q4 4.03120 q Ho + 5.55690 - q2 H ] 
0 

ifq>,C 
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I .- 

c = wq=() [l - 0.19648 q + 0.07182 q2 f 0.19631 q3 

+ 0.08557 q4 - 3.71562 q H 
0 

- 1.15432 q2 Ho 1 (44) 

where 

(c)q=o = 3.4843 - 113.66 Ho + 56903 Ho2 (45) 

These expressions are generally valid for the range of values of the 

variables (q) and (Ho) of 

-1.0 ,< q ,< + 0.75 

10 -6 
,< Ho ,< 10 

-3 

When the variable Ho goes below 10 -6 , 

over to a Hertz contact model given by Loo 

the model is switched 

[15] and linearly approx- 

imated by Conry and Seireg [16] for two cylinders in Contact: 

p' = TTE 
>( 

-'W 1 

2WY2) 
12.5 ) H 

where P' is the normal force per unit-width of the roller 

resulting from the indentation w -H 

wH is the indentation of the cage by the cylinder 

(46) 

E is the modulus of elasticity of the roller and the 

cage 

v is Poisson's ratio 
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The indentation of the cage by the cylinder is measured.from 

the point where Ho = 1.0 X 10 -6 and the resulting normal force per 

unit width ('PI). is added'to'the normai force per unit width (n) 

evaluated at Ho = 1.0 X 10 -6 in equations (36) and (37). 

The minimum film thickness and the indentation (if any) of 

the roller relative to the cage in the cage pocket is defined as 

C 

hO 

g c--d 
2 (47) 

hO if..R- ->, 10 
-6 

eq 

and 

WH = PO - 1.0 x 1o-6 Reql (48) 

h 
if 0 -< 10 -6 

R 
eq 

where C g 
is the circumferential clearance in the cage pocket I 

R eq 
is the equivalent radius of the roller and cage pocket 
surface 

d is the displacement of the center of the roller 

from the center of the cage pocket. 

The surface tr,actions acting on the surfaces of the cage pocket 

and the roller are taken to be the total normal force times a Coulomb 

friction constant of 0.05 when Ho < 10 -6 
. 

These relationships are programmed in subroutine DIFFUN [5] with 

equations (36) to (45) programmed in subroutines RLCGF and FRICTF [5]. 
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Driving force between cage and land 

The roller bearing type considered in this report has a cage 

which rides on two inner race lands Under full hydrodynamic lubri- 

cation, the relative motion between the cage and the inner race 

land gives rise to a pressure distribution between the inner sur- 

faces of the cage and the land surfaces upon which itrides. The 

expression for the pressure distribution in this oil film is given 

by Kirk and Gunter [17j. 

The cage riding on an oil film between it and the inner race 

land can be modeled as an inside out journal bearing. The "journal" 

motion is prescribed while the "bearing" (in this case, the cage) 

moves ina path subject to the Newtonian equations of motion for 

the cage. 

The expression for the forces acting on the cage is based on 

equation 3.42 of [IT], but modified to consider prescribed displace- 

ments and velocities of the inner race. 

i 

FX 

FY I = - 
p 'OUT L3 

- A,) sin 8 + (y - A ) cos 8 
Y > 

-2.0 -(i - fk) cos 8 - (f - A ) sin 0 
( Y )I 

1 
3 

c + (x - 4) co.5 8 + (y - A ) sin 8 
Y L 

0 . c 1’ cos 8 de 
(49) 

sin 8 

_ 
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where Fx and F 
Y 

!J 

L..:. 

Wshaft 

WC 

x and y 

are the hydrodynamic forces on the cage 

is the dynamic viscosity'of the lubricant 

is. the half-width of the total cage/land surface 

is the angular speed of the inner race 

is the angular speed of the cage 

are the displacements of the cage relative to 

a fixed frame 

~~ and 4r 
are the displacements of the inner race relative 

to a fixed frame 

C is the radial clearance between the cage and the 

inner race land 

The integral in equation (49) is evaluated by a composite 

Legendre - Gauss quadrature using a 96 - point formula. This eval- 

uation is performed subject'to the restriction that the argument of 

the integral is negative. If it is positive, it is set to zero over 

that interval for purposes of the numerical integration. This co& 

responds to integrating over the positive pressure region only. 

These expressions are programmed in subroutines DIFFUN, 

CGPRES and GQU3Z [5]. 

Drag torque on the cylindrical roller surface 

As the roller spins about its own axis a shear stress is 

generated on the surface as a result of the shearing of the lubri- 

cant/air mixture present in the open spaces of the bearing. When 

summed over the cylindrical area and multiplied by the value of 

the radius of the roller, the drag torque is obtained. This model 

for the drag torque on the roller is given in Rumbarger et. al. [3] 

and is based on a vortex-turbulent correlation. 
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Before any quantities can be computed, the average clearance 

between the roller and the cage and between the roller and the race 

lands must be determined, Fig. 8. For this computer program the 

clearance between the roller and the cage was left out of this aver- 

aging process as the drag between the roller and cage was considered 

in a previous section. This clearance is defined by equation (50) 

and is the average clearance over the regions I, II, IV and V shown 

in Fig. 8. 
1 

'H = (2’7 - be,) circumference 
not adjacent 
to the cage 

The average clearance is then computed as: 

cH = 2 [r(l* j7 - e,) 

r+ 1 - 2 cg 1 + cos 1 + sin 
f 

c 2 ) ( 
In 

el e2 

- 
1 - cos 8 

In 
- 1 1 sin 8 2 ) 

- r (+- - el - e2) 
I/ P - 2e2) 

(50) 

(51) 

where 8 1 and 8 2 are defined in Figure 8 

and where C is the total circumferential clearance between 
g 

the roller and the cage pocket as shown in Fig. 8. 

The vortex-turbulent correlation was utilized by inserting the 

appropriate values of clearance, viscosity, speed and roller geometry 

into equations (29), (30) -ad (31) which give the Reynolds number, 

the laminar friction factor and the Taylor number respectively. The 

vortex turbulent correlation is given as [3]. 

f - = 1.3 [ >; ]o-53g474 
fL 

(52) 
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and the effective density of the oil/air mixture about the roller for 

this correlation is 

oeff = p (DRGFDL) (53) 

If the Reynolds number is less .than 2500 or the Taylor number 

is less than 41, 

laminar friction 

The average 

. 
the appropriate friction factor is taken to be the 

factor fL (equation (30)): '- 

shear stress acting on the surface of the roller is 

Tw=+f 
oeff (+j‘ (54) 

. 
where 5 is the angular velocity of the roller about its own axis. 

The average drag torque on the roller is calculated by integrating 

a differential drag torque over the area of the roller, excluding 

the area between the roller and the cage. 

‘r 
TDRAG= wr 

2 
a (2n - 4G2) (55) 

The expressions given in this section are computed in subroutine 

R1245 [5]. 

Drag Torque on the roller ends 

Drag torques resist the motion of the roller as it moves through 

the oil/air mixture as was seen in the previous section. In addition 

to drag torques on the cylindrical surface, there are drag torques on 

the roller ends. Following Rumbarger et. al. [3], the effective 

density of the oil/air mixture is given by equation (53). 
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The drag torque is computed by using equation (34), supported 

by equations (32), (33) and (35). The angular velocity to be used 
. 

is 6i' the angular velocity of the roller about its own axis. 

These relationships are programmed in subroutine ROLEND [5]. 

Forces between roller end and guiding flange 

Roller bearings with the roller guided on the inner race subject 

the roller to both driving forces and drag forces due to the close 

clearances and resulting lubrication forces between the roller ends 

and the guiding flange. The flow field in this location is very 

complex but a simplified model is used to approximate these forces 

[31. 

The forces in this program are based on the shearing of the lub- 

ricant between the roller end and the guiding flange. The roller is 

assumed to move with equal axial clearance on both sides. 

Referring to Figure 9, the area of the roller which projects on 

the guiding flange is divided into 5 horizontal strips and 8 vertical 

strips, symmetrical about the vertical line through the center. 

The 

equation 

The 

effective density of the oil/air mixture is again given by 

(53). 

forces and torques acting on the strips are calculated from 

the shear stress acting on the strip in the direction of the strip 

au T= 
PeffV -ap (56) 

38 



Projection of Land Surface 
of Inner Race Guide Flange 

, Inner Race 

Figure 9. Model for Calculating the Forces Between the Roller 
End and the Guiding Flange 
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au where 7 is the velocity 'gradient of the velocity in the direction 

of the strip. 

The driving and retarding forces and torques are calculated in 

subroutine LANDLIP [5]. 
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II - 

THE TWO DIMENSIONAL GOVERNING DIFFERENTIAL 
EQUATIONS OF MOTION 

Consider a roller bearing with (NZ) rollers, guided by a flange 

attached to the inner race and separated by a cage. The outer race 

is assumed to be fixed and the inner race is rotating at some angular 

‘Peed *shaft l 

For the purposes of writing the two dimensional governing dif- 

ferential equations of motion, the following assumptions are made: 

(1) The motion of the roller is only in the transverse plane 

and is only rotational, both about the axis of the roller and about 

the axis of the bearing. The roller is assumed to be fixed in posi- 

tion between the inner and outer race, and for the case of high 

speed bearings, the roller is always pressed against the outer race 

due to the action of the centrifugal forces. 

(2) The motion of the cage is only in the transverse plane 

and is rotational about its own axis and translational in the plane. 

From these two sets of assumptions, the number of degrees of 

freedom for the roller bearing system is: 

degrees of freedom = 3 + 2(NZ) (57) 

For the purposes of this program, the quantities of interest 

as cage state variables are the angular velocity, angular displace- 

ment, the translational velocities and the translational displace- 

ments. The quantities of interest as roller state variables are 

the angular velocities of the rollers about the roller centers 

and the angular velocities and angular displacements of 
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the center of the roller with respect to the bearing center. This 

gives 3(NZ) + 6 state variables which are required to describe the 

two dimensional motion of the roller bearing. This in turn implies 

that the solution of 3(NZ) + 6 first order differential equations 

are required to provide the state variables which describe the 

motion of the bearing. 

The equations of motion are based on the dynamics of rigid 

bodies. The forces acting on the rigid bodies, the rollers and 

the cage, may be due to contact or deflection of the surfaces 

but the deformations are so small, less than 0.1 percent, that 

the inertial properties are considered to be constant. 

The differential equation of motion of the i th roller 

about its own axis is 

. . 
I ci= c 

Torques (58) 

Referring to Fig. 3, equation (58) becomes 

(59) 

ill , .o.a, NZ 
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where FIN and F OUT 
are traction forces calculated by equations (24) 

FTBR and FTFR are drag forces on the roller exerted by the 

cage and are calculated by equations (38) or 

a coulomb friction as determined by the sec- 

tion on roller-cage interaction forces. 

T rland 

T rend 

T rcyl 

is a driving torque exerted by the guide 

flange on the roller. It is computed in sub- 

routine L4NDLIP [5]. 

is a drag torque acting on the ends of the 

roller. It is calculated in subroutine 

ROLEND [5]. 

is a drag torque acting on the surface of the 

roller. It is calculated in subroutine R1245 [5]. 

. . 
ci is the angular acceleration of the i th 

roller about its own axis 

m is the mass of the roller 

r is the roller radius 

The differential equation of motion of the i th roller about 

the center of the bearing is, considering the roller as a rigid body 

with the center of mass at the center of the roller: 

,, 

m (r -I- R) ' pi = 1 Torques (60) 

where R is the radius of the inner race 
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Referring to Fig. 3, equation (60) becomes 

= (R + r)[Fii)- FAii + I!!;)- &i)+ FRY,] (61) 

1 = 1, . . . . NZ 
The differential,equations of motion of the cage describe the 

planar motion of the cage. As the motion of the cage is limited 

to three degrees of freedom, the governing equations, relative to 

a fixed coordinate system, are: 

m cage X 
(62) 

m cage ;;=CFy 
i (63) 

I cagei = 7 Torques (64) I -.. 

where m and I cage cage are the mass and polar moment inertia of 

the cage respectively. 

The quantities TF and 
LX 1 

Fy are the sums of forces acting on 

the cage in the x and y directions respectively. The forces 

included in these quantities are the hydrodynamic forces between 

the cage and the inner race land and the forces from the roller- 

cage interaction. The gravity vector is in the positive y direction. 

The forces between the cage and the inner race land are given 

in equation (49). The roller-cage interaction forces acting on the 

cage are calculated from equations (36) through (48). Referring to 

Figs. (3) and (10): 
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ARCSIN 

r+R 

Figure 10. The Normal and Frictibnal Roll&r-Cage Forbes Acting 
. on the Cage at the j th Pocket 
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NZ 
=+F 

X 
cage + 7 *i'sin (1: - o) 

.I 

NZ 

-1 (j) 
FTBR cos ( - a> 

j=l 

NZ 
+ 

I F;jf; cos (+j +c~) 

j4 

NZ 

- c+ j) 
F sin ( d j +a> 

j=l 

c 
F = + F cage + m 

Y Y cage g 

NZ 

-IF" 
$' co.5 '+j - a) 

j=l 

NZ 

-1 
(j) FTBR sin (dj -a) 

j=l 

NZ 

+ ,(j) 
TFR sin (dj +a) 

j=l 

NZ 

+ 
I+ $’ cos (dj +a) 

(65) 

(66) 
j=l 

The torques which act on the cage are classified into three 

categories; (1) the torques due to cage-roller interactions, (2) the 

driving torque due to inner race land-cage interaction, and (3) the 

drag torques about the sides and outer surface of the cage due to 

the shearing of the oil-air mixture. The right hand side of equation 

(64) is written as 
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c 
Torques = 71 & 

cage-land 
area 

NZ 

-I- (R f r) 
c (67) 

- TCoS - TCDO 

whnzre T 
1.: IJO 

arid T CDS are given by equations (25) and (34) respectively. 

The shear stress used in the integral in equation (67) is 

represented as 

where rIN 

h 

CL 

*shaft 

co c 

Letting 

IJ 'IN (?shaft - %) 
7= (68) 

h 

is the inner radils of the cage which rides on 

the land 

is the film thickness 

is the absolute viscosity of the oil 

is t:le angular speed of the shaft 

is the angular speed of the cage 

h = c (1 + c cos 8) 

the integral in equation (67) becomes: 

7 r,dA = 
2 p L r: 

C (%haft - %) 
cage land 

(69) 

(70) 

area 
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where C is the radial clearance-between the cage and the land 

L is the half width of the total cage-land surface 

c is the ratio of the minimum film thickness to the 

radial clearance 

Some of the differential equations described above are refonn- 

ulated for a more efficient numerical solution. The motion of the 

center of mass of a roller is necessarily limited by the constraints 

of the cage pocket. A critical quantity used in the determination 

of the cage-roller interaction forces is the relative distance be- 

tween a roller surface and its cage pocket surfaces. This quantity 

is obtained by subtracting the angular displacement of the mass 

center of the roller from the angular displacement of the cage, 

which numbers can become very large and which can lead to errors 

in accuracy. 

Rather than solve equations (61) and (64) and subtract the #its 

froma, equations (61) are replaced by the difference between the 

angular accelerations of the rollers and the angular acceleration 

of the cage. When integrated twice this yields an angular displace- 

ment difference. The calculation will be stable, the displacement 

will be bounded and the numerical problem of differencing large 

numbers will be avoided. The new set of differential equations ob- 

tained from equations (61), (64), (67) and (70) are 
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I 

1 = +;; - #; + &;).m ,$;I+ F ci) 
m (r +R) HTAND 

] 

I cage 

_ (r+R) 
I cage j=l 

+-+TCDO TCDS 
I I cage cage 

i = 1, . . . . NZ 

(71) 

The governing differential equations for the planar motion of 

the roller bearing system are now given by equations (59), (62), 

(63), (64) and (71). These are 2(NZ) + 3 equations which corre- 

spond to the number of degrees of freedom given in equation (57). 

Before attempting a numerical solution of this system of equa- 

tions, they will be made non-dimensional. The forces will be 

scaled by a quantity F* which is taken to be the maximum force on 

any of the rollers [2]. This maximum force is related to the mass 

of the roller, a characteristic dimension, in this case, R + r, 

and a characteristic value of time by 

m (R + r) 2 we = F* 

where U) e is a characteristic angular velocity 

The dimensionless time T is related to real time t by 

(72) 
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T=w,t (73) 

Equation (71) is related to the relative displacement of the 

center of the roller in the cage pocket by multiplying it by (R + r) 

and scaling it with the total clearance between the roller and the 

cage pocket (Cg). The relative dimensionless displacement is de- 

fined as 

CR + r) (pi -3) 
h = 
"i L g 

(74) 

In addition to scaling forces 

and the dimensionless torques 

bar (-). 

Equation (59) becomes 

d2 <i - = 2 (r +R) 

dT2 r 

+ 

by F*, torques are scaled by F* r 

and forces are denoted by a supra 

-(i> -(i> 
FOUT - FTBR TFR 

_ F(i) 

5 fi) 
rland 

i = 1, . . . . NZ (75) 

Equation (71) becomes 

(r + RI d2 'i - 
dT2 % c 

+i) _ F(i) + $i>- j(i)+ F(i) 
IN OUT B F HIAND 

47-rI-L-I r: 
( 

%haft 
I cage ' wedn we 

m (r +R) 
I cage 

2 "z" (i$.~L g..)) 

j=l 
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I - --. 

+ (TCDS + TCDO) 

I 2 
cage % 3 

(76) 

i = 1, . . . . NZ 

Define the dimensionless displacements of the cage as: 

x=X 
C 

(77) 

Equations (62) and (63) are then given as: 

d2ii = 1 
Fx 

cage 

dT2 m cage we 2C 

NZ 
+ 

CP 
$)sin (+j - a) - F;;; cos (4j - CY) 

j=l 

+ ,(j) TFR cos +#'j +LY) - FF (j)sin (4 j +cu> 

13 
(78) 

d2: = 1 

dT2 m cage we 2C 
F cage + m 
Y cage g 

NZ 
pcos (+ 

B j 
j=l 

- F$L sin (dj +cy) - l$;)cos (73) 
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The differential equation relating the angular acceleration of 

the cage to the torques acting on the cage (equation (64)) is 

AT= %haft da -- 
dT2 I cage ' we 1-c we dT 

> 

+ m (r +R) 
I cage j=l 

0 CDS + TCDo> 

I 2 
cage We 

(80) 

The system of differential equations (equations (75), (76), (78) 

(79) and (80))are then solved numerically to obtain the state 

variables of interest. Equations (75) are only integrated once 

to find the angular velocity of the roller. The angular dis- 

placement of the roller about its o-zn center is not needed for 

this problem. Equations (76) are integrated twice to find the 

relative velocity and relative displacement of the roller in the 

pocket. Equations (78), (79) and (80) are also integrated twice 

to find the velocities and displacements of the cage. 
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THE THREE DIMENSIONAL GOVERNING DIFFERENTIAL 
EQUATIONS OF MOTION 

The equations of motion to be presented in this chapter build 

* on the governing equations developed in THE TWO DIMENSIONAL GOVERNING 

DIFFERENTIAL EQUATIONS OF MOTION. Four more degrees of freedom are 

added to each roller, an axial translation, a radial translation, a 

skewingofthe roller relative to the inner race and a tilt of the 

roller relative to the inner race. 

The cage motion is assumed to remain planar. The cage in a 

typical very high speed bearing has a large angular momentum vector 

which would require torques of high magnitude to force the cage into 

a significant precession. Kingsbury [18] observed this phenomenon 

of planar cage motion in tests of bearings for gyroscopes. 

The planar model of the cage is also used because of the lack 

of good models to relate the potentially skewed surfaces between 

roller and cage to torques about the transverse axes of the cage. 

The roller is so constrained by the side flanges that, for the pur- 

pose of calculating the squeeze film forces, it remains parallel to 

the cage pocket surface. 

In the previous section, the roller motion in the radial di- 

rection was constrained to satisfy the static equations of equi- 

librium of the roller bearing system. In this section, that con- 

straint is relaxed to allow accelerations of the roller in the 

radial direction because of the cross couplings of the tilt angle 

of the roller, the radial deflection of the roller and the normal 

force and tilt torque applied to the roller. These quantities are 

needed to solve the coupled Euler equations of motion for each 
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roller. The static equations of equilibrium are used to establish 

the initial conditions for the roller radial displacements of the 

centers of mass of the rollers and the roll angles of the rollers. 

The complete motion of each roller is obtained by considering 

the motion of the center of mass of the roller in the inertial 

coordinate frame (c, 4 , z) and the rotational motion of the roller 

about its center of mass in the roller frame (5, 1, c) under the 

assumption that the tilt angle 5 and the skew angle 11 are very 

small. These frames are selected such that the P vector and the 'll 

axis are parallel and the 5 axis is parallel to the inertial axis z. 

Denoting the mass of the roller by m, the polar moment of 

inertia of the roller (about the c axis) by I and the transverse 

moment of inertia of the roller by IT, the equations of motion of 

each roller are [19]: 

. . 
m ( Pi -piii2) = F(i) 

P 

(81) 
. . 

m(Pifii + 2 ;li$,, = Fp 

i = 1, . . . . NZ 

.O . 

IT ?i - IT iiSi = G!i) 

. . . . 
IT qi + IT Tiki = Gii) 

I ‘si = ,ii) 
(82) 

i = 1, . . . . Nz 
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where i is the orbital velocity of the roller 

G ,, G and G 
5 T 5 

as the torques applied about the (5, T, 5) axis 

The third of equations (82) are identical to equations (58). The 

torques G(i) 
s 

are given in the right side of equation (59). 

The axial motion of the roller relative to the inner race is deter- 

mined using,a kinematic relationship. The axial velocity of the center 

of mass of the roller relative to the race is eqJa1 to the product of 

the relative velocity of the center of mass of the roller and the race 

in the 7 direction (U:ti) and the angle of skewof the roller (T,), thus 

dzi 
- = u(i) q 

dt rel i (83) 

i = 1, . . . . NZ 

The radius vector pi in equations (81) is given as 

pi 
= r -I- R •k di’ 

r (84) 

where Ji> is the deflection of the roller mass center and r and r 

R are the roller radius and inner race radius respect- 

ively. 

The forces FLi) (i> 
P 

are determined by substituting the 6, for &a#. 
J 

and the qi for gj in equations (4), (5), and (10) with FC = 0. The 

residual F 
j 

is interpreted as the net applied force on the roller 

in the radial direction. The torques, CP, 
b 

are determined by evalu- 

ating equation (11) where the residual, F. J +NZ' is the negative of 

the net tilt torque on the roller. 
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The dimensionless form of the forces, F (i> , are given in the 

brackets on the right hand side of equations (61). If pi were a 

constant, the second of equations (81) would be identical to 

equations (61). 

The torques Gii) in equations (82) have two components, a 

torque due to unevenly distributed.traction forces along the length 

of the roller at the roller-race interfaces and a torque due to 

elastic deformation between the edges of the roller and the guiding 

flanges of the inner race when the roller impacts those guide flanges. 

The torque due to unevenly distributed traction forces is continuous 

in time. The misalignment of the bearing inner race to the outer 

race contributes to the uneven load distribution on the roller which 

in turn affects the magnitude of the traction coefficient. The net 

moment of the product of the normal loads on the "slices" of the 

roller (from Chapter 2) and the traction coefficients for the same 

slices is the torque which tends to skew the roller. 

The torque due to the impact of the roller edge(s) with the 

guide flange(s) gives rise to a restoring torque which can have a 

large magnitude. The basis for calculating the contact force is 

given by Brewe and Hamrock [2O] where an approximate force relation- 

ship is given as a function of the geometry of the contacting sur- 

faces and the material constants. 
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I --- 

FI = [(+)‘(2Ref;yf2(+) 
where f = 1.5277 + 0.6023 log, (Ry/Rx) 

1 1 1 
R 

=m+- 
eff RX 

R 
Y 

1 1 1 -=-+- 
RX rAx rBx 

1 1 1 -=-+- 
R 

Y 'AY rB~ 

0.6360 

E' = 2 
1 - VA2 

+ 
1 - vB2 -1 

EA EB 1 
where FI is the contact force due to impact 

6 is the contact deflection 

f is an approximation of an elliptic integral of 
the second kind 

R eff is the effective radius 

rAx etc. are radii of curvature 

k is the ellipticity parameter 

V is Poisson's ratio 

3 is an approximation of an elliptic integral of 
the first kind 

E' is the effectiye modulus of elasticity 

(85) 

(85) 

(87) 

(88) 

(89) 

(90) 

(91) 

(92) 

(93) 

The subscripts A and 6 refer to the two bodies in contact, respectively. 
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The equivalent radius in one principal plane at the contact 

point is approximated as: 

1 1 -=- 
RX rm 

The equivalent radius in the other principal plane at the 

contact point is approximated as: 

1 1 -=- 
R 

Y rfm 

Therefore from equations (89), (94) and (95) 

1 1 1 =-+- 
R eff rfm r m 

(94) 

(95) 

(96) 

where r is the minor radius at the corner of the roller m 

rfm 
is the minor radius of the inner race guide flange 

at the corner. 

When the roller is skewed,the contact between the roller and 

the guide flange is at a point located at the intersection of the 

roller circumference and the circumference of outer surface of the 

guide flange. 

The restoring torque after impacting 

Tf = rf RI 

as shown in figures (4) and (11). Figure 

rf = r sin 8 F 

the guide flange is 

(97) 

(11) also illustrates that 

QF 
= arc cos 

(R i- r)2 i- r2 - Rf2 

2r (R -I- r) 1 
(98) 

where Rf is the radius of the outer surface of the inner race 

guide flange 

In summary, the torques G (i) 
7 may be expressed as: 
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Edge view of Top 
Surface of Guide Flange 

Center of Inner Race 

Figure 11. The Geometry of the Roller Bearing System Used to 
Establish the Point of Contact Between a Skewed 
Roller and the Guide Flange 
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&i> = NzpJj) (FiC$) _ FAO-:)) 
"rl 

j=l 

+i 4 
j) 

=f I 
j=l (99) 

where 79) is the distance from the center of mass 

of the roller to the center of the "slice" 

as described in THE CONSTITUENT MODELS. 

(ij) 
FIN and FAii) are the tractive forces calculated over 

the contact area of the j 'th slice using 

equations (24) 

is the contact force between a roller 

corner and the side walls of the guide 

flange. 

In equation (99) the four potential contact points of the roller 

are considered, Fig. 4. In the program, the locations of these 

points are monitored and if contact occurs, the corresponding FLIj' 

is calculated. If there is no contact, the corresponding is set 

to zero. 

From the discussion presented thus far in this chapter, ten 

first order differential equations are required to describe the motion 

of each roller. For the bearing with NZ rollers and a cage in planar 

motion only, the total number of first order differential equations is 

6 + 10 (NZ). 

The remainder of this section deals with the simplifications 

made to this system of equations. The essential character of the 

motion is retained while ignoring some smaller effects. 
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Consider now an harmonic solution of the first of equations 

(81) , after the substitution of equation (84) to be 

. 
s”’ 
r = Dl cos d i t (100) 

Then 
I 

m(- 
l 2 

Dl $" cost, t - (R + r) 4i - Dl 4 
'2 ' i cos P i t> = Fy' (101) 

The quantity on the left hand side is dominated by the term (R -I- r), 

since 

R + r >> Dl (102) 

The value of Dl would typically be of the order of 10 -3 or 10 -2 and 

R + r is of the order 1. This implies that the forces F (i) should be 
P 

equal to the centrifugal forces, the condition enforced in the static 

load distribution problem considered in THE CONSTITUENT MODELS. Thus 

the first of equations (81) may be eliminated. 

At each point in time every roller is placed in static equilib- 

rium which implies that the velocity and acceleration of the center 

of mass of the roller are zero in the radial direction. Thus, the 

second of equations (81) become, using equation (102) 

. . 

m (r + R) +i = F 
W 

9 

i = 1, . . . . NZ 

(103) 

Equations (103) are identical to equations (61). 
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The first of equations (82) are eliminated because of the enforce- 

ment of the static equations of equilibrium. The torques &i> are zero 
5 

as a result of this constraint and the values of the roll velocity and 

acceleration of the rollers are taken to be zero. The second term 

of the first of equations (82), is estimated to have a mag- 

nitude of the order of 1.13 x 1o-2 N-m (10S2 in - lbf) which would entail 

only a minute change in the static normal load distribution of the rollers. 

The second term on the left hand side of the second of equations 

(82) is set to zero because of assumption of zero tilt velocity and 

acceleration of the rollers. This set of differential equations for 

theskewdisplacements becomes: 

IT ii = &;’ (104) 

i = 1, . . . . NZ 

The scmplified system of governing differential equations for 

the three dimensional motion of the rollers is given by the third of 

equations (82), equations (83), (103) and (104). The equations of 

motion of the cage remain unchanged from the planar motion case. 

The dimensionless form of equations (83) is then written as 

using equations (73) and (74) 

d z' i 

dT 

+ r) _ R %haft 
cZ 1 71 

i (105) 

Z 

where z 
i = - i 

cZ 

62 



cz is the total axial clearance between the roller ends and 

the inner race guide flanges 

#shaft is the shaft angular velocity 

The dimensionless form of equations (104) for the skew displace- 

ments are of the form 

d2 rl 
NP 

i - = F* c 
dT-2 I 2 i 

T ul.e j=l 

4 

+ F* 
I 2 
T % j=l 

(1176) 

The reduced system of dimensionless differential equations to 

be solved is equations (75), (76), (78), (79), (80), (105) and (106). 

63 



DISCUSSION OF RESULTS 

The equations of motion developed in this report differ in certain 

respects from those presented by Gupta [4]. Gupta presents the three 

equations of motion of the roller mass center in an inertial reference 

frame and presents the three Euler equations of motion in a roller fixed 

frame. He then presents a transformation matrix to convert the moments 

from an inertial frame to a roller fixed frame. His formulation is gen- 

eralized and contains the full six degrees of freedom for each roller. 

Two formulations of the equations of motion were presented in this 

report, the two dimensional problem and the three dimensional problem. 

The motion of the cage is limited to two dimensions for both cases. The 

two dimensional formulation only permits planar motion of the roller. The 

radial motion is neglected as the races and centrifugal forces effectively 

constrain it to be very small. 

The three dimensional formulation again neglects the radial displace- 

ment and the tilt angle dynamics of the roller. The tilt of the roller 

is assumed to be a function of the misalignment of the races, the loading, 

and the geometry and elasticity of the rollers. The axial motion of the 

roller relative to the race is expressed by a kinematic condition rather 

than a dynamic condition. 

The equationsofmotion which describe the motion of the roller center 

in the plane of the bearing are modified in this report. Many of the forces 

which act on the cage and the rollers are functions of the relative displace- 

ments between roller and cage. To keep numerical stability, new differential 

equations are formulated in terms of these relative displacements. Gupta 

[4] makes no mention of using this approach. 
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The approach used by Gupta 143 for calculating roller-race inter- 

action is essentially the same as used in this report. The work of 

Palmgren [8]was used as the basis for the normal load distribution cal- 

culation. The lubricant model used in this report was for Mil-L-7808 

type lubricant while Gupta [4] used Mil-L-7808 and 5P4E polyphenyl ether. 

The roller end to race flange interactions are treated in similar 

fashion in this report and in Ref. [4]. The roller to cage and race to 

cage interactions are also treated in a similar fashion to Ref. [4]. The 

churning and drag loss models in this report and in [4] are based on the 

work of Rumbarger [3]. These are approximate models which depend on an 

effective density. This approach has been used in most rolling bearing 

applications. The effective oil density is in effect a parameter which 

must be adjusted to the operating conditions which are being simulated. 
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CONCLUDING REMARKS 

The two and three dimensional differential equations of motion of 

a high speed cylindrical roller bearing have been derived in this re- 

port. Simplifying assumptions were made which were specific to the 

cylindrical roller bearing. The original differential equations were 

manipulated to provide a more numerically stable system of differential 

equations. 

Approximate models were utilized to compute churning losses, traction 

forces, roller to cage and roller to race interaction forces. As more 

knowledge becomes available in these specific areas, changes to the over- 

all differential equations can be made. 
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LIST OF SYMBOLS 

SYMBOLS 

C 

d 

f 

f 

f 

g 

glij 

g2ij 

h 

h 
0 

k 

a 

m 

m cage 

n 

radial clearance (m) 

distance between edge of cage pocket to center of 

roller (m) 

approximation of an elliptic integral of the second 

kind 

traction force (N) 

friction factor 

acceleration of gravity (m/s2) 

total contact deformation at the inner contact of the 

ith slice of the roller at angular location + j (4 

total contact deformation at the outer contact of the 

ith slice of the roller at angular location j (4 

film thickness (m) 

minimum film thickness (m) 

ellipticity parameter 

length of a roller (m) 

mass of a roller (kg) 

mass of the cage (kg) 

normal load per unit length (N/m) 

dimensionless velocity parameter 

load intensity (N/m) 

maximum Hertzian contact pressure (N/m2) 
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- 

r 

r 
C 

'f 

rfm 

rIN 
r m 

rOUT 
U 

U 

U 
S 

* 
U 

s 

V 

v 
W 

W 

"H 
X 

Y 

'i 

roller radius (m) 

characteristic radius (m) 

distance as described in equation (98) (m) 

minor radius of the inner race guide, flange at the 

corner (m) 

inner radius of cage (m) 

minor radius at the comer of the roller (m) 

outer radius of cage (m) 

mass average velocity of fluid, equation 26 (m/s) 

entraining velocity (m/s) 

sliding velocity at the roller-race contact (m/s) 

normalizing constant for sliding velocity (m/s) 

rolling velocity at the roller-race contact (m/s) 

dimensionless sliding ratio 

width of a slice of the roller (m) 

normal velocity (m/s) 

normal indentation of a roller (m) 

absolute displacement of cage in x-direction (m) 

absolute displacement of cage in y-direction (m) 

location of the ith slice of the roller (m) 
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A 

A 

B 

C 

C 

C 
g 

C H 

'i 

C pi 

C z 

D1 

DECFLJL 

E 

E' 

F" 

FB 

F 
C 

F cage 

FF 

FHLLAND 

constant equal to 5.46 X 10 -8 , equation (1) 

surface area (m2) 

constant, equations (40) and (41) 

constant, equations (42) and (43) 

radial clearance (m) 

circumferential clearance in the cage pocket (m) 

average clearance between roller and cage (m) 

initial separation due to crowning of the i th slice 

of a roller (m) 

friction factor, equation (35) 

axial clearance between roller ends and the inner 

race guide flanges (m) 

an arbitrary constant 

ratio of the oil volume in the bearing to the total 

volume of the bearing 

modulus of elasticity (N/m*) 

effective modulus of elasticity (N/m*) 

maximum force on the rollers, used for scaling (N) 

normal forces on the roller exerted by the cage (N) 

centrifugal force on a roller (N) 

dimensionless traction force acting on cage pocket 

surface 

normal forces on the roller exerted by the cage (N) 

force exerted on the roller sides by the inner race 

land (N) 
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FI 

FIN 

F. 
J 

FOUT 

F roller 

F TBR 

F TFR 

FX 

F 
Y 

G 

HO 

I 

I cage 

IT 

L 

N 

,(j) 
in 

,(j) 
out 

NP 

N RE 

N TA 

NZ 

contact force due to impact (N) 

traction force between roller and inner race (N) 

residual quantity used in equations (9) and (10) 

traction force between roller and outer race (N) 

dimensionless traction force acting on roller 

drag forces on the roller exerted by the cage (N) 

drag forces on the roller exerted by the cage (N) 

hydrodynamic force on cage in x-direction (N) 

hydrodynamic force on cage in y-direction (N) 

torque (N-m) 

dimensionless minimum film thickness 

mass moment of inertia of roller about its axis of 

rotation (kg - m2) 

mass moment of inertia of cage (kg - m2) 

transverse moment of inertia of roller (kg - m2) 

half-width of total cage/land surface (m) 

dimensionless normal load carrying capacity 

total normal force on the j th roller at the inner 

race contact (N) 

total normal force on the j th roller at the outer 

race contact (N) 

number of slices along the axis of roller 

Reynolds number 

Taylor number 

number of rollers in bearing 
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P' 

'd 

Q 

R 

R eff 

R 
-4 

Rf 

T 

T CD0 

T CDS 

Tf 

T rcyl 

T rend 

T rland 

U 

normal force per unit width (N/m) 

diametral clearance of the bearing (m) 

applied load to a roller (N) 

radius of the inner race (m) 

effective radius 

equivalent radius (m) 

radius of the outer surface of the inner race guide 

flange (m) 

dimensionless time 

drag torque on outer cylindrical surface of cage (N - m) 

drag torque on the sides of the cage (N - m) 

restoring torque (N - m) 

drag torque acting on the surface of the roller (N - m) 

drag torque acting on the ends of the roller (N -m) 

driving torque exerted by the guide flange on the 

roller (N - m) 

surface velocity (m/s) 
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e 

V 

D 

‘j 

P 

Peff 

7 

TW 

one-half of the included angle of the cage pocket 

(radian) 

tilt angle of the j th roller (radian) 

contact deformation (m) 

relative approach between the roller axis and the 

outer ring along the radial line passing through 

the center of the roller at angular location 
9 j (4 

eccentricity ratio 

principal axis in roller frame 

angle of skew (radian) 

angular displacement of the cage (radian) 

dynamic viscosity of oil (N-s/m2) 

traction coefficient 

normalizing constant for traction coefficient 

oil viscosity (m*/s) 

Poisson's ratio 

principal axis in roller frame 

angle of tilt (radian) 

radial direction of roller motion in an inertial frame 

displacement of 

direction (m) 

density (kg/m3) 

3 
th roller in the radial 

effective density of oil/air mixture (kg/m') 

shear stress (N/m2) 

wall shear stress (N/m2) 
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5 

w 

Wshaft 

r 
AX 

AY 

8 
Y 

@O 

angular position of the j th roller relative to the 

x-axis (radian) 

angular velocity of the i th roller about its own 

axis (m/s) 

principal axis in the roller frame 

angular velocity 

angular velocity of the cage (radian/s) 

characteristic angular velocity, equation (72) (radian/s) 

angular velocity of the shaft (radian/s) 

constant, equation (11) 

component of radial displacement of bearing inner race 

in x-direction (m) 

component of radial displacement of bearing inner race 

in y-direction (m) 

angular misalignment of bearing inner race relative to 

the outer race about the x-axis (radian) 

angular misalignment of bearing inner race relative to 

the outer race about the y-axis (radian) 

angular location of an axis with respect to the x-axis 

about which the total angular misalignment is applied 

(radian) 

approximation of an elliptic integral of the first kind 

angular velocity (radian/s) 
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Subscripts 

L laminar 

r 5 direction 

5 5 direction 

17 11 direction 

P p direction 

4 I# direction 

z z direction 
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